Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Ecol Evol ; 13(11): e10679, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928198

RESUMO

Microbiomes are increasingly recognised as critical for the health of an organism. In eusocial insect societies, frequent social interactions allow for high-fidelity transmission of microbes across generations, leading to closer host-microbe coevolution. The microbial communities of bees with other social lifestyles are less studied, and few comparisons have been made between taxa that vary in social structure. To address this gap, we leveraged a cloud-computing resource and publicly available transcriptomic data to conduct a survey of microbial diversity in bee samples from a variety of social lifestyles and taxa. We consistently recover the core microbes of well-studied corbiculate bees, supporting this method's ability to accurately characterise microbial communities. We find that the bacterial communities of bees are influenced by host location, phylogeny and social lifestyle, although no clear effect was found for fungal or viral microbial communities. Bee genera with more complex societies tend to harbour more diverse microbes, with Wolbachia detected more commonly in solitary tribes. We present a description of the microbiota of Euglossine bees and find that they do not share the "corbiculate core" microbiome. Notably, we find that bacteria with known anti-pathogenic properties are present across social bee genera, suggesting that symbioses that enhance host immunity are important with higher sociality. Our approach provides an inexpensive means of exploring microbiomes of a given taxa and identifying avenues for further research. These findings contribute to our understanding of the relationships between bees and their associated microbial communities, highlighting the importance of considering microbiome dynamics in investigations of bee health.

2.
Evol Med Public Health ; 11(1): 202-218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404250

RESUMO

Trypanosomatids are a diverse family of protozoan parasites, some of which cause devastating human and livestock diseases. There are two distinct infection life cycles in trypanosomatids; some species complete their entire life cycle in a single host (monoxenous) while others infect two hosts (dixenous). Dixenous trypanosomatids are mostly vectored by insects, and the human trypanosomatid diseases are caused mainly by vectored parasites. While infection prevalence has been described for subsets of hosts and trypanosomatids, little is known about whether monoxenous and dixenous trypanosomatids differ in infection prevalence. Here, we use meta-analyses to synthesise all published evidence of trypanosomatid infection prevalence for the last two decades, encompassing 931 unique host-trypansomatid systems. In examining 584 studies that describe infection prevalence, we find, strikingly, that monoxenous species are two-fold more prevalent than dixenous species across all hosts. We also find that dixenous trypanosomatids have significantly lower infection prevalence in insects than their non-insect hosts. To our knowledge, these results reveal for the first time, a fundamental difference in infection prevalence according to host specificity where vectored species might have lower infection prevalence as a result of a potential 'jack of all trades, master of none' style trade-off between the vector and subsequent hosts.

3.
PLoS One ; 17(11): e0277041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36441679

RESUMO

The bumblebee Bombus terrestris is commonly infected by a trypanosomatid gut parasite Crithidia bombi. This system shows a striking degree of genetic specificity where host genotypes are susceptible to different genotypes of parasite. To a degree, variation in host gene expression underlies these differences, however, the effects of standing genetic variation has not yet been explored. Here we report on an extensive experiment where workers of twenty colonies of B. terrestris were each infected by one of twenty strains of C. bombi. To elucidate the host's genetic bases of susceptibility to infection (measured as infection intensity), we used a low-coverage (~2 x) genome-wide association study (GWAS), based on angsd, and a standard high-coverage (~15x) GWAS (with a reduced set from a 8 x 8 interaction matrix, selected from the full set of twenty). The results from the low-coverage approach remained ambiguous. The high-coverage approach suggested potentially relevant genetic variation in cell surface and adhesion processes. In particular, mucin, a surface mucoglycoprotein, potentially affecting parasite binding to the host gut epithelia, emerged as a candidate. Sequencing the gut microbial community of the same bees showed that the abundance of bacterial taxa, such as Gilliamella, Snodgrassella, or Lactobacillus, differed between 'susceptible' and 'resistant' microbiota, in line with earlier studies. Our study suggests that the constitutive microbiota and binding processes at the cell surface are candidates to affect infection intensity after the first response (captured by gene expression) has run its course. We also note that a low-coverage approach may not be powerful enough to analyse such complex traits. Furthermore, testing large interactions matrices (as with the full 20 x 20 combinations) for the effect of interaction terms on infection intensity seems to blur the specific host x parasite interaction effects, likely because the outcome of an infection is a highly non-linear process dominated by variation in individually different pathways of host defence (immune) responses.


Assuntos
Microbiota , Neisseriaceae , Abelhas/genética , Animais , Estudo de Associação Genômica Ampla , Crithidia/genética , Variação Genética
4.
Sci Rep ; 12(1): 15783, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138070

RESUMO

Bumblebees are important pollinators of wild and agricultural plants but recently have been declining due to various stressors, such as pesticides and diseases. Because of the haplo-diploid sex determination system in hymenopterans, experiments using micro-colonies (small sub colonies without a queen) to identify risks to bumblebee health are limited as they are only able to produce males. Therefore, an experimental protocol for rearing bumblebee larvae in vitro is needed to better understand effects on worker larvae. Here, we aimed to establish a rearing method for larvae of Bombus terrestris for use in risk assessment assays. To confirm the validity of our rearing method, we tested two insecticides used for tomato cultivation, chlorfenapyr and dinotefuran. Bombus terrestris larvae fed with a high nutrient quantity and quality diet increased growth per day. All chlorfenapyr-exposed individuals died within 10 days at 2000-fold dilution, an application dose used for tomatoes. There were significant differences in adult emergence rate among almost all chlorfenapyr treatments. On the other hand, sublethal dinotefuran-exposure did not affect rates of pupation and adult emergence, growth, or larval and pupal periods. Although larvae were smaller than in the natural colony, this rearing method for B. terrestris larvae proved to be effective at evaluating realistic sub-colonies to pesticide exposures.


Assuntos
Inseticidas , Animais , Abelhas , Guanidinas , Humanos , Inseticidas/toxicidade , Larva , Masculino , Neonicotinoides , Nitrocompostos , Piretrinas , Testes de Toxicidade
6.
PLoS Biol ; 19(1): e3000796, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497373

RESUMO

Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.


Assuntos
Cicloexanonas/uso terapêutico , Reposicionamento de Medicamentos , Controle de Infecções/métodos , Nitrobenzoatos/uso terapêutico , Tripanossomíase Africana/prevenção & controle , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Animais , Abelhas/efeitos dos fármacos , Feminino , Humanos , Inseticidas/uso terapêutico , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Modelos Teóricos , Doenças Negligenciadas/prevenção & controle , Produção de Droga sem Interesse Comercial , Ratos , Ratos Wistar , Testes de Toxicidade , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/efeitos dos fármacos , Moscas Tsé-Tsé/metabolismo , Tirosina/metabolismo
7.
Mol Biol Evol ; 38(2): 486-501, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32946576

RESUMO

Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships, whereas incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators.


Assuntos
Adaptação Biológica/genética , Abelhas/genética , Evolução Biológica , Genoma de Inseto , Animais , Uso do Códon , Elementos de DNA Transponíveis , Dieta , Comportamento Alimentar , Componentes do Gene , Tamanho do Genoma , Seleção Genética
8.
Heredity (Edinb) ; 121(3): 225-238, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29915335

RESUMO

Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring's immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.


Assuntos
Adaptação Fisiológica/imunologia , Evolução Biológica , Suscetibilidade a Doenças/imunologia , Ecologia , Padrões de Herança/imunologia , Invertebrados/imunologia , Vertebrados/imunologia , Animais , Padrões de Herança/genética , Invertebrados/genética , Vertebrados/genética
9.
PLoS One ; 13(1): e0189738, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304093

RESUMO

Trypanosomatids (Trypanosomatidae, Kinetoplastida) are flagellated protozoa containing many parasites of medical or agricultural importance. Among those, Crithidia bombi and C. expoeki, are common parasites in bumble bees around the world, and phylogenetically close to Leishmania and Leptomonas. They have a simple and direct life cycle with one host, and partially castrate the founding queens greatly reducing their fitness. Here, we report the nuclear genome sequences of one clone of each species, extracted from a field-collected infection. Using a combination of Roche 454 FLX Titanium, Pacific Biosciences PacBio RS, and Illumina GA2 instruments for C. bombi, and PacBio for C. expoeki, we could produce high-quality and well resolved sequences. We find that these genomes are around 32 and 34 MB, with 7,808 and 7,851 annotated genes for C. bombi and C. expoeki, respectively-which is somewhat less than reported from other trypanosomatids, with few introns, and organized in polycistronic units. A large fraction of genes received plausible functional support in comparison primarily with Leishmania and Trypanosoma. Comparing the annotated genes of the two species with those of six other trypanosomatids (C. fasciculata, L. pyrrhocoris, L. seymouri, B. ayalai, L. major, and T. brucei) shows similar gene repertoires and many orthologs. Similar to other trypanosomatids, we also find signs of concerted evolution in genes putatively involved in the interaction with the host, a high degree of synteny between C. bombi and C. expoeki, and considerable overlap with several other species in the set. A total of 86 orthologous gene groups show signatures of positive selection in the branch leading to the two Crithidia under study, mostly of unknown function. As an example, we examined the initiating glycosylation pathway of surface components in C. bombi, finding it deviates from most other eukaryotes and also from other kinetoplastids, which may indicate rapid evolution in the extracellular matrix that is involved in interactions with the host. Bumble bees are important pollinators and Crithidia-infections are suspected to cause substantial selection pressure on their host populations. These newly sequenced genomes provide tools that should help better understand host-parasite interactions in these pollinator pathogens.


Assuntos
Abelhas/parasitologia , Crithidia/genética , Crithidia/patogenicidade , Genoma de Protozoário , Animais , Crithidia/classificação , Evolução Molecular , Interações Hospedeiro-Parasita/genética , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Filogenia , Polissacarídeos/metabolismo , Proteínas de Protozoários/genética , Especificidade da Espécie , Sintenia
11.
BMC Genomics ; 18(1): 207, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28249569

RESUMO

BACKGROUND: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. RESULTS: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. CONCLUSIONS: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.


Assuntos
Abelhas/genética , Interações Hospedeiro-Patógeno/genética , Animais , Abelhas/microbiologia , Abelhas/parasitologia , Abelhas/virologia , Bases de Dados Genéticas , Evolução Molecular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Imunidade Inata/genética , Anotação de Sequência Molecular , Nosema/fisiologia , Vírus de RNA/fisiologia , Varroidae/fisiologia
12.
J Anim Ecol ; 86(3): 473-483, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28211052

RESUMO

Determining the factors governing investment in immunity is critical to understanding host-pathogen ecological and evolutionary dynamics. Studies often consider disease resistance in the context of life-history theory, with the expectation that investment in immunity will be optimized in anticipation of disease risk. Immunity, however, is constrained by context-dependent fitness costs. How the costs of immunity vary across life-history strategies has yet to be considered. Pea aphids are typically unwinged but produce winged offspring in response to high population densities and deteriorating conditions. This is an example of polyphenism, a strategy used by many organisms to adjust to environmental cues. The goal of this study was to examine the relationship between the fitness costs of immunity, pathogen resistance and the strength of an immune response across aphid morphs that differ in life-history strategy but are genetically identical. We measured fecundity of winged and unwinged aphids challenged with a heat-inactivated fungal pathogen, and found that immune costs are limited to winged aphids. We hypothesized that these costs reflect stronger investment in immunity in anticipation of higher disease risk, and that winged aphids would be more resistant due to a stronger immune response. However, producing wings is energetically expensive. This guided an alternative hypothesis - that investing resources into wings could lead to a reduced capacity to resist infection. We measured survival and pathogen load after live fungal infection, and we characterized the aphid immune response to fungi by measuring immune cell concentration and gene expression. We found that winged aphids are less resistant and mount a weaker immune response than unwinged aphids, demonstrating that winged aphids pay higher costs for a less effective immune response. Our results show that polyphenism is an understudied factor influencing the expression of immune costs. More generally, our work shows that in addition to disease resistance, the costs of immunity vary between individuals with different life-history strategies. We discuss the implications of these findings for understanding how organisms invest optimally in immunity in the light of context-dependent constraints.


Assuntos
Afídeos/fisiologia , Fertilidade , Imunidade Celular , Imunidade Humoral , Características de História de Vida , Longevidade , Distribuição Animal , Animais , Afídeos/imunologia , Afídeos/microbiologia
13.
PLoS One ; 11(7): e0159635, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27442590

RESUMO

Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming), preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker) gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways.


Assuntos
Abelhas/genética , Abelhas/imunologia , Características da Família , Regulação da Expressão Gênica , Hierarquia Social , Imunidade/genética , Animais , Perfilação da Expressão Gênica , Genes de Insetos , Análise de Sequência de RNA
14.
mBio ; 7(2): e02164-15, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27118586

RESUMO

As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.


Assuntos
Bactérias/genética , Abelhas/microbiologia , Abelhas/fisiologia , Evolução Biológica , Microbiota , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Abelhas/genética , Polinização , Simbiose
15.
Proc Natl Acad Sci U S A ; 113(13): 3567-72, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976598

RESUMO

Many microorganisms with specialized lifestyles have reduced genomes. This is best understood in beneficial bacterial symbioses, where partner fidelity facilitates loss of genes necessary for living independently. Specialized microbial pathogens may also exhibit gene loss relative to generalists. Here, we demonstrate that Escovopsis weberi, a fungal parasite of the crops of fungus-growing ants, has a reduced genome in terms of both size and gene content relative to closely related but less specialized fungi. Although primary metabolism genes have been retained, the E. weberi genome is depleted in carbohydrate active enzymes, which is consistent with reliance on a host with these functions. E. weberi has also lost genes considered necessary for sexual reproduction. Contrasting these losses, the genome encodes unique secondary metabolite biosynthesis clusters, some of which include genes that exhibit up-regulated expression during host attack. Thus, the specialized nature of the interaction between Escovopsis and ant agriculture is reflected in the parasite's genome.


Assuntos
Formigas/microbiologia , Genoma Fúngico , Hypocreales/genética , Hypocreales/patogenicidade , Animais , Genes Fúngicos Tipo Acasalamento/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Hypocreales/metabolismo , Filogenia , Simbiose
16.
Science ; 348(6239): 1139-43, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25977371

RESUMO

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.


Assuntos
Abelhas/genética , Evolução Molecular , Deriva Genética , Comportamento Social , Transcriptoma , Aminoácido N-Acetiltransferase , Animais , Abelhas/classificação , Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma de Inseto/genética , Filogenia , Seleção Genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
17.
Genome Biol ; 16: 76, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908251

RESUMO

BACKGROUND: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. RESULTS: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. CONCLUSIONS: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.


Assuntos
Abelhas/genética , Comportamento Animal , Genes de Insetos , Comportamento Social , Animais , Venenos de Abelha/genética , Abelhas/classificação , Abelhas/fisiologia , Células Quimiorreceptoras/metabolismo , Mapeamento Cromossômico , Bases de Dados Genéticas , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Rearranjo Gênico , Genômica , Sequências Repetitivas Dispersas , Masculino , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Selenoproteínas/genética , Selenoproteínas/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia
18.
Genome Biol ; 16: 83, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908406

RESUMO

BACKGROUND: Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. RESULTS: We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman's principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. CONCLUSIONS: The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts.


Assuntos
Abelhas/genética , Abelhas/imunologia , Comportamento Animal , Evolução Molecular , Comportamento Social , Animais , Abelhas/classificação , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Variação Genética , Masculino , Seleção Genética
19.
BMC Genomics ; 15: 1031, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25431190

RESUMO

BACKGROUND: Ecological studies routinely show genotype-genotype interactions between insects and their parasites. The mechanisms behind these interactions are not clearly understood. Using the bumblebee Bombus terrestris/trypanosome Crithidia bombi model system (two bumblebee colonies by two Crithidia strains), we have carried out a transcriptome-wide analysis of gene expression and alternative splicing in bees during C. bombi infection. We have performed four analyses, 1) comparing gene expression in infected and non-infected bees 24 hours after infection by Crithidia bombi, 2) comparing expression at 24 and 48 hours after C. bombi infection, 3) determining the differential gene expression associated with the bumblebee-Crithidia genotype-genotype interaction at 24 hours after infection and 4) determining the alternative splicing associated with the bumblebee-Crithidia genotype-genotype interaction at 24 hours post infection. RESULTS: We found a large number of genes differentially regulated related to numerous canonical immune pathways. These genes include receptors, signaling pathways and effectors. We discovered a possible interaction between the peritrophic membrane and the insect immune system in defense against Crithidia. Most interestingly, we found differential expression and alternative splicing of immunoglobulin related genes (Dscam and Twitchin) are associated with the genotype-genotype interactions of the given bumblebee colony and Crithidia strain. CONCLUSIONS: In this paper we have shown that the expression and alternative splicing of immune genes is associated with specific interactions between different host and parasite genotypes in this bumblebee/trypanosome model.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Imunidade/genética , Insetos/genética , Insetos/imunologia , Animais , Análise por Conglomerados , Biologia Computacional , Crithidia , Perfilação da Expressão Gênica , Genótipo , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Insetos/parasitologia , Serina Proteases/genética , Fatores de Tempo
20.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850921

RESUMO

Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host-parasite interactions.


Assuntos
Abelhas/genética , Dieta , Regulação da Expressão Gênica , Imunidade Inata/genética , Proteínas de Insetos/genética , Animais , Abelhas/enzimologia , Abelhas/imunologia , Abelhas/parasitologia , Crithidia/fisiologia , Proteínas Alimentares/metabolismo , Privação de Alimentos/fisiologia , Proteínas de Insetos/metabolismo , Monofenol Mono-Oxigenase/sangue , Pólen/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...